
November 26th, 2021 | v.	1.0

SMART CONTRACT AUDIT

score

99

PASS
Zokyo’s Security Team has concluded
that this smart contract passes
security qualifications to be listed on
digital asset exchanges.

1

SyncDAO Smart Contract Audit

This document outlines the overall security of the SyncDAO smart contracts, evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the SyncDAO smart contract codebase
for quality, security, and correctness.

There were no critical and high issues found during the audit.

Contract Status

low Risk

Testable Code

The testable code is 99,36%, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract, rather limited to an assessment of the logic and implementation. In order to
ensure a security of the contract we at Zokyo recommend that the SyncDAO team put in place
a bug bounty program to encourage further and active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .

2

SyncDAO Smart Contract Audit

10Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

6Complete​ ​Analysis

5Structure​ ​and​ ​Organization​ ​of​ ​Document

4Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

. . .

3

SyncDAO Smart Contract Audit

Within the scope of this audit Zokyo auditors have reviewed the following contract(s):
� GovernanceDistribution.so�
� GovernanceToken.sol

The SyncDAO smart contract’s source code was taken from the repositories provided by the
SyncDAO team: https://github.com/syncdao/governanceToken

Initial commits (audited): 50a80a7133179584416a2acd0efab3443d39a559

Last commits (post-audit): bf8985bdbc36b4918b837ac5a92a1352faf45216

Auditing Strategy and Techniques Applied

. . .

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of SyncDAO smart contracts. To do so, the code is reviewed line-by-line by
our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite. In summary, our strategies consist largely of manual
collaboration between multiple team members at each stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough, manual review of the
codebase, line-by-line.

Throughout the review process, care was taken to ensure that the contract:

Implements and adheres to existing standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Follows best practices in efficient use of resources, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

4

SyncDAO Smart Contract Audit

There were several medium and low issues discovered during audit that relate to the
following unsafe ERC20 transfers, extra checks and overall code quality. The code itself is well
written, though lacks gas optimisation in several places. Though, there were no critical issues
found during the audit.

After recommendations by Zokyo auditors, all issues that influence security and efficiency
were fixed by SyncDAO team.

EXECUTIVE Summary

. . .

5

SyncDAO Smart Contract Audit

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the contract in such a way
that funds may be lost, allocated incorrectly,
or otherwise result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are
tagged “Resolved” or “Unresolved” depending on whether they have been fixed or addressed.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

SyncDAO Smart Contract Audit

informational

Repeatable code.

Lines 35, 40. ‘Require’ statement repeats.

Recommendation:
It is recommended to replace the requirement with hasRole function with onlyRole modifier
from AccessControl.sol.

(https://docs.openzeppelin.com/contracts/4.x/api/access#AccessControl-onlyRole-bytes32-).

Low

Missing license type.

Contracts should contain license type.

Recommendation:
Specify the license type using a comment in the first line of the code of the contracts.

(https://docs.soliditylang.org/en/latest/layout-of-source-files.html?highlight=license#spdx-
license-identifier).

Complete​ ​Analysis

. . .

Common

GovernanceToken.sol

7

SyncDAO Smart Contract Audit

informational

Repeatable code.

Lines 162, 252, 323. ‘Require’ statement repeats.

Recommendation:
It is recommended to replace the requirement with hasRole function with onlyRole modifier
from AccessControl.sol.

(https://docs.openzeppelin.com/contracts/4.x/api/access#AccessControl-onlyRole-bytes32-).

medium

Use safeERC20 library.

Lines 312, 327. SafeERC20 already performs all the checks, which are performed in the
contract.

Recommendation:
Use SafeERC20 library instead. This is necessary in order to be able to withdraw tokens with
non-standard ERC20 implementation(like USDT). SafeERC20 resolves this problem.

. . .
GovernanceDistribution.sol

8

SyncDAO Smart Contract Audit

. . .

informational

Unnecessary check.

Line 165. An unnecessary requirement, since this check is already included in enum type, that
is, when passed to the function, AllocationType will be checked for a range of its values.

Recommendation:
Remove this requirement.

informational

Unnecessary check.

Line 294. The vesting value does not change in the code after the allocation is set, so that
there is no case so that there is no case when the value is zero and the allocation exists.

Recommendation:
Remove the ‘if’ statement, since it can never succeed

9

SyncDAO Smart Contract Audit

. . .

PassAccess Management Hierarchy Pass

PassArithmetic Over/Under Flows Pass

GovernanceTokenGovernanceDistribution

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of
Randomness)

PassPassRace Conditions / Front
Running

PassPassShort Address/ Parameter Attack

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

PassPassPool Asset Security

PassPassRe-entrancy

PassPassDelegatecall Unexpected Ether

PassPassHidden Malicious Code

PassPassExternal Contract Referencing

PassPassUnchecked CALL Return Values

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

10

SyncDAO Smart Contract Audit

GovernanceDistribution
✓ Administrator can refund other tokens (810ms)

Setting of an allocation
✓ Distributor can set an allocation (272ms)
✓ Distributor can set an allocation to add tokens (241ms)
✓ Distributor can set allocations with different types (1345ms)
✓ Distributor can renew a canceled allocation (235ms)
✓ Distributor can not set an allocation if a recipient zero address (49ms)
✓ Distributor can not set an allocation if a zero allocated amount (62ms)
✓ Distributor can not change an allocation type (158ms)
✓ Distributor can not change an allocation release status (153ms)

Cancellation of an allocation
✓ Distributor can cancel an allocation (190ms)
✓ Distributor can cancel allocations with different types (1714ms)
✓ Distributor can not cancel if a nonexistent allocation (67ms)
✓ Distributor can not cancel if an allocation with claimed tokens (238ms)

Claiming
✓ Everybody can claim (256ms)
✓ Everybody can claim if an instant release allocation (187ms)
✓ Everybody can claim if a monthly unlock style (196ms)
✓ Nobody can claim if a nonexistent allocation (66ms)
✓ Nobody can claim if an allocation have already been transferred (239ms)
✓ Nobody can claim if tokens for the period have already been transferred (298ms)

Only a distributor has the listed abilities
✓ Setting of an allocation (92ms)
✓ Cancellation of an allocation (74ms)

GovernanceToken
✓ Pause functionality (555ms)

22 passing (10s)

As part of our work assisting SyncDAO in verifying the correctness of their contract code, our
team was responsible for writing integration tests using Truffle testing framework.

Tests were based on the functionality of the code, as well as review of the SyncDAO contract
requirements for details about issuance amounts and how the system handles these.

Tests written by Zokyo Secured team

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

11

SyncDAO Smart Contract Audit

. . .

contracts/ 99.36 93.18 100.00 99.27

GovernanceToken.sol 100.00 100.00 100.00 100.00

GovernanceDistribution.sol 99.33 92.86 100.00 99.23 295

FILE UNCOVERED LINES% STMTS % BRANCH % FUNCS % LINES

All files 99.36 93.18 100.00 99.27

We are grateful to have been given the opportunity to work
with the SyncDAO.

The statements made in this document should not be
interpreted as investment or legal advice, nor should its
authors be held accountable for decisions made based on
them.

Zokyo's Security Team recommends that the SyncDAO put in
place a bug bounty program to encourage further analysis of
the smart contract by third parties.

